DeepLink: A Deep Learning Approach for User Identity Linkage
1. Introduction
Feature-based approaches 基于特征的方法
从用户资料和社交平台的活动中提取独立的特征:e.g., username, gender, writing style
Network-based approaches 基于网络的方法
COSNET
IONE
Challenge
mapping the behaviors of cross-site accounts to a particular user
user representation:
- cross-platform behavior prediction
- cross-platform account correlation
lack of labeled data
Contributions
- 应用深度学习学习用户活动和网络结构的潜在语义
- semi-supervised graph regularization to predict the context (neighboring structures) of
nodes in the network - dual-learning process
2. Related Work
Profile-based methods
使用用户的用户资料信息,将不同社交平台的账号链接到一起
user name
writing style identification:grammatical structure,frequency of letters
Network-based methods
BIG-ALIGN
Neighborhood-based features
CLF
将网络节点的结构进行嵌入
3. Preliminary Background
Problem Definition
Social Network Graph
Network Embedding Model
User Identity Linkage
Graph Mapping Function
4. DeepLink:The Proposed Model
Network Structure Sampling
首先通过几轮随机游走生成每一个user的多个 social sequence (每一个 social sequence 代表了用户的社交关系)
从顶点(用户) ui 开始,在每一步中沿着随机选择的边前进,直到到达长度L
algorithms:LINE,GraRep, node2vec
User Latent Space Embedding
Neural Mapping Learning
two Multi-Layer Perceptrons
Linkage Dual Learning
Unsupervised UIL Pretraining :先从一个graph映射到另一个graph再映射回来
Supervised UIL Learning
5. Experiments
Dataset
Baseline and settings
比较方法:
- Input-Output Network Embedding (IONE) : node vector, input vector and output vector
- ONE: node vector and output vector
- MAH: Manifold Alignment on Hypergraph
- MAG: Manifold Alignment on traditional Graphs
- CRW: Collective Random Walk
Evaluation Metrics
Precision@k(P@k)
MAP
AUC
Hit-Precision
- 本文作者: Kelly Liu
- 本文链接: http://tiantianliu2018.github.io/2019/09/15/论文阅读《DeepLink-A-Deep-Learning-Approach-for-User-Identity-Linkage》/
- 版权声明: 本博客所有文章除特别声明外,均采用 MIT 许可协议。转载请注明出处!